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SUMMARY

A numerical procedure is proposed for the solution of the Boussinesq equations in rectangular channels
over a horizontal bed. The Boussinesq equations account for non-hydrostatic effects in free-surface flows.
The proposed approach is a predictor–corrector procedure where the hyperbolic part of the equations is
treated using a higher-order estimate of the variable slope of the Godunov-type, MUSCL scheme. The
proposed slope estimate is third-order accurate on irregular grids and fourth-order accurate on regular
grids. The dispersive, non-hydrostatic terms are treated using a semi-implicit discretization. A stability
analysis of the proposed predictor–corrector procedure shows that optimal accuracy is achieved when the
implicitation parameter is set equal to 0.5. This analysis is confirmed by numerical experiments, whereby
the propagation of a solitary wave and the development of an undular bore are reproduced and compared
successfully with the available analytical solutions. The proposed method is shown to be of a good level
of accuracy without being too sensitive to the numerical parameters. Its applicability in practical problems
is illustrated by a comparison with laboratory experiments. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Flows in rivers and channels are commonly described using the shallow-water theory, assuming
hydrostatic pressure distribution and depth-averaged velocity. In this shallow-water context, sharp
transitions between two different flow states result in a discontinuity in both the water surface
and the velocity. These are referred to as bores. In reality, for large transitions, such a bore takes
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the form of a breaking wave with turbulent rollers. However, transitions of moderate amplitude
are accompanied by wave trains without any wave breaking. These are called undular bores. Such
undular bores are the consequence of the weak non-hydrostaticity of the pressure distribution [1, 2].
An undular bore can also grow in shallow flows over obstacles [3], or occur as internal undular
bores in the density-stratified waters of the coastal ocean [4].

The Boussinesq equations include some additional dispersive terms compared with the shallow-
water equations. Such dispersive terms allow weak non-hydrostaticity to be accounted for by
assuming that the vertical-velocity component varies linearly from the bottom to the free surface.
These equations can be used to represent solitary wave propagation or Favre waves, which are
secondary undulations developing at the head of a bore for flows with a Froude number up to
approximately 1.23 [2, 5]. The wave train created behind a moving front is the result of the necessity
to dissipate energy. For larger Froude numbers, the energy is dissipated in a moving roller at the
breaking front wave. As they are not based on an energy interpretation of the phenomenon [6], the
Boussinesq equations do not account for the breaking of the waves. On the contrary, they cause
the amplitude of the undulations to grow with increasing Froude numbers.

The analytical study conducted in [7] allowed unsteady undular bores to be described in the fully
nonlinear theory, and showed how bores remain unsteady and their amplitude grows in time in the
absence of any dissipation in the equations. A numerical solution to the Boussinesq equations is
thus to be found in their range of validity, namely gradually varied flows, solitary waves where
a permanent shape solution is sought and cnoidal wave trains where a periodical solution is
sought [8].

Besides the pioneering experimental work of Favre [3], other authors have conducted laboratory
or field measurements of such undular bores. Among them, Benet and Cunge [9] and Treske [10]
have investigated surge waves in trapezoidal channels, Ponsy and Carbonnell [11] have conducted
a photogrammetry investigation and Marche et al. [12] have observed such waves in dam-break-
induced flows.

Several finite-difference schemes have been developed to solve the complete set of Boussinesq
equations [2, 13–15] in order to compute the development of an undular bore, generally starting
from a smooth initial water profile. The scheme by Prüser and Zielke [14] was compared with
experiments: good agreement was obtained for the water depth, but the wave propagation speed
was inaccurate. Bratsos et al. [16] developed a parametric finite-difference model, investigating
the influence of the implicitation parameter, and comparing the results with those obtained with a
commercial modelling package.

A hybrid finite-volume approach was developed in [1] that allowed for steep flow gradients
as initial conditions, but showed some numerical diffusion of the results when compared with
experiments. Such an approach was adopted and extended to higher-order accuracy in [17, 18].
Higher-order accuracy was also achieved in [19], where the detailed stability analysis of a finite-
volume scheme is presented. This latter scheme was successfully used to simulate the propagation
of a solitary wave. A second-order model developed by Stansby [20], as in [19], does not use
Riemann solvers to compute the intercell fluxes.

Finite-element methods were also developed to solve the Boussinesq equations [21, 22] and
compared with experimental data. A finite-element discretization with a weighted residual technique
for the solution approach within each element is presented by Antunes Do Carmo et al. [23] and
compared with experimental data. Then, the semi-implicit method by Walters [24] yields a robust
scheme, used to simulate tsunami wave propagation, although it is quite diffusive when compared
with the analytical solution of a solitary wave.
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Besides, many developments were conducted on simplified forms of the Boussinesq equations.
The Korteweg–de-Vries equation (KdV [25]) and the regularized long-wave (RLW) equation (see,
e.g. [26, 27]) are uni-directional forms of the Boussinesq equations, where the convective terms
are neglected. Therefore, while the Boussinesq equations consist of a continuity and momentum
equation, the KdV and RLW equations are scalar equations describing the evolution of the water
elevation only. Sanders et al. [28] investigated the properties of unidirectional and bidirectional
equations by means of a Fourier pseudospectral method.

The present paper focuses on the solution of the Boussinesq equations for rectangular channels
with a horizontal bed. An improved discretization of the hyperbolic term is provided, and a new
discretization method for the dispersion term is introduced. This formulation is less sensitive to
the computational time step than previous work presented in [1]. The approach is first validated by
comparison with the analytical solution of a solitary wave. Then, a comparison with an experimental
test case illustrates the usefulness of the Boussinesq equations when non-hydrostatic terms cannot
be neglected in the momentum equation.

2. GOVERNING EQUATIONS AND SOLUTION PROPERTIES

The Boussinesq equations read (see [1] for the details of the derivation)

�h
�t

+ �q
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=0
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(1)

where h is the water depth, g is the gravitational acceleration, q=hu is the unit discharge, u being
the depth-averaged flow velocity and S0 and Sf are the bottom and energy slopes, respectively. Sf
is classically accounted for by a Manning–Strickler friction law

Sf= |u|u
K 2R4/3

H

= n2|u|u
R4/3
H

(2)

where K and n are Strickler’s and Manning’s friction coefficients, respectively, and RH is the
hydraulic radius of the channel, that is, the ratio of the cross-sectional area of the channel to the
wetted perimeter. In the case of a rectangular channel of width b as dealt with in the present paper,
RH is given by

RH= bh

b+2h
≈h if h�b (3)

Equations (1) can be expressed in vector conservation form as

�U
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+ �F
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−D

(
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�t�x2
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)
=S (4)
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where the conserved variable U, the flux F, the dispersion matrix D and the source term S are
defined as

U =
[
h

q

]
, F=

[
q

�

]
=
[

q

q2/h+gh2/2

]

D = h2

3

[
0 0

−u 1

]
, S=

[
0

(S0−Sf)gh

] (5)

Note that Equation (4) can also be rewritten in non-conservative form as

�U
�t

+A
�U
�x

=D

(
�3U

�t�x2
+u

�3U
�x3

)
+S=H+S (6)

where H is the matrix related to the dispersive terms H=D(�3U/�t�x2+u�3U/�x3) and A is the
Jacobian matrix A=�F/�U given by

A=
[

0 1

c2−u2 2u

]
(7)

where c=(gh)1/2 is the propagation speed of pressure waves in still water in the shallow-water
theory.

The behaviour of the analytical solution is analysed under the assumption of frictionless motion
in a horizontal channel. A harmonic analysis is carried out by linearizing Equation (6) around a
uniform, reference flow state (h0,q0). The resulting perturbation equation is

�V
�t

+A0
�V
�x

−D0

(
�3V

�t�x2
+u0

�3V
�x3

)
=0 (8)

where V=[h−h0,q−q0]T is the vector of the flow perturbation from the uniform state and the
subscript 0 indicates that the values of A, D and u are taken for the reference state (h0,q0). The
solutions of Equation (8) are sought in the form

V(x, t)=V0 exp(�t+ j�x) (9)

where j is the pure imaginary number such that j2=−1, the space pulsation � is a pure real number
and the time pulsation � is to be determined for a given �. Solution (9) of Equation (8) is stable
if the real part of � is negative. From the predefined form (9), it follows that

�p+kV
�t p�xk

=�p( j�)kV (10)

Substituting Equation (10) into Equation (8) yields an equation of the type

MV=0 (11)

with the matrix M given by

M=�I+ j�A0+(��2+ ju0�
3)D0 (12)
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where I is the 2×2 identity matrix. Equation (11) has non-trivial solutions only if the determinant
of M is zero, that is∣∣∣∣∣ � j�

−ku0�+[c20−(1+k)u20] j� (1+k)�+ j(2+k)u0�

∣∣∣∣∣=0 (13)

where the dimensionless number k is defined as

k= 1
3 (h0�)2 (14)

Solving Equation (13) for � yields

�=−
[
u0± c0

(1+k)1/2

]
j� (15)

Note that � has a zero real part, which means that the solution is neither amplified nor damped.
It may, however, be subject to deformation in time due to a possible dependence of the propagation
speed of the waves on the wavelength. Equation (15) allows the phase velocity (also called celerity)
of the waves to be determined. The phase velocity, denoted by � hereafter, verifies the condition

V(x, t)=V(x−�t,0) (16)

Substituting Equation (9) into Equation (16) yields

�= j�

�
(17)

Substituting Equation (15) into Equation (17) leads to the final expressions for �

�(1) =u0−(1+k)−1/2c0

�(2) =u0+(1+k)−1/2c0
(18)

As in the shallow-water theory the solution of Equation (1) is the sum of two solutions propagating
at two different phase velocities �(1) and �(2), and the phase velocities are equal to the sum of
the local flow velocity and the propagation speed of the waves in still water (in the direction
of negative x and in the direction of positive x). In contrast with the shallow-water theory, the
propagation speed of the waves in still water depends on the ratio between the wavelength and the
water depth via the dimensionless number k defined in Equation (14). The space pulsation � being
related to the wavelength L by �=2�/L , k is a decreasing function of the ratio h0/L . Therefore,
the propagation speed of the waves in still water is an increasing function of the wavelength L .
For a wave of infinite length, k tends to zero and the phase velocities � tend to the celerities of the
classical shallow-water theory. Figure 1 illustrates the behaviour of the phase speed of the waves
in still water as a function of L/h0.

The group velocity � is defined as [29]

�= d(��)

d�
(19)
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Figure 1. Phase velocity and group velocity in still water as functions of the ratio of the wavelength to
the water depth. Logarithmic coordinates for both axes.

Substituting Equations (18) into (19) leads to the following expressions for the group velocities:

�(1) =u0−(1+k)−3/2c0

�(2) =u0+(1+k)−3/2c0
(20)

The group velocity in still water decreases faster than the phase velocity as the wavelength
decreases. This behaviour is illustrated in Figure 1.

3. NUMERICAL TECHNIQUE

A shock-capturing finite-volume scheme is used to solve the hyperbolic part of the equations [30].
This allows flows with sharp discontinuities, or sharp initial conditions, to be simulated. Such
flow configurations include, e.g. the sudden increase or decrease in the discharge following the
instantaneous opening or closing of a gate, as illustrated in the applications. The bed slope and
friction source terms are neglected from this point for the sake of clarity and simplicity of the
developments. The dispersive terms are treated using a semi-implicit discretization. Eventually,
various MUSCL-type variable reconstruction schemes are used, among which a new fourth-order
slope estimate is presented in Section 3.3.

3.1. Outline of the approach

A finite-volume discretization [31] of the integral form of (1) applied to a mesh of the space–time
computational grid of Figure 2 yields, considering the dispersive term separately as an external
source term,

Un+1
i =Un

i − �t

�x
(Fi+1/2−Fi−1/2)+Hi�t (21)

where Hi denotes the results of the discrete integration of the dispersive term over the area �
(Figure 2).
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Figure 2. Definition of variables and computational grid in the physical space (top)
and in the phase space (bottom).

The inter-cell fluxes Fi−1/2 and Fi+1/2 are calculated as functions of initial vectors Un
i and

Un
i+1, using Roe’s scheme under the form [30]

Fi+1/2= 1+Fr∗

2
Fn
i + 1−Fr∗

2
Fn
i+1+c∗ 1−Fr∗2

2
(Un

i −Un
i+1) (22)

where Fr is the Froude number and the superscript ∗ denotes averaged values at the cell interfaces,
calculated as

Fr∗ = u∗

c∗ , u∗ = ciui +ci+1ui+1

ci +ci+1
, c∗ =

√
g
hi +hi+1

2
(23)

Limiting the absolute value of Fr to unity allows both subcritical (Fr<1) and supercritical (Fr�1)
conditions to be accounted for by Equation (22). A predictor–corrector scheme is used to account
for the semi-implicit discretization of the dispersive term.

3.1.1. Predictor step. System (21) without the dispersive term Hi is solved explicitly to find a
provisional value Upred

i of Un+1
i . This step is expressed as

Upred
i =Un

i + �t

�x
(F̄(n)

i−1/2−F̄(n)
i+1/2) (24)

where F̄(n)
i+1/2 is the numerical flux vector at the interface between cells i and i+1 calculated

according to Equations (22)–(23), using the values Un
i .

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:237–261
DOI: 10.1002/fld



244 S. SOARES-FRAZÃO AND V. GUINOT

3.1.2. Implicit step for the non-hydrostatic source term of the momentum equation. The momentum
equation in (21) including the dispersive terms is discretized using a semi-implicit finite-difference
approximation for the dispersive term. The implicitation factor � ranges from 0 to 1. The value
�=1 corresponds to a fully implicit discretization of the dispersion terms, while a fully explicit
discretization is obtained for �=0

qn+1
i = qni − �t

�x
[(1−�)(�̄(n)

i+1/2− �̄(n)
i−1/2)+�(�̄predi+1/2− �̄predi−1/2)]

+ (hni )
3

3�x2

(
qn+1
i+1

hpredi+1

−2
qn+1
i

hpredi

+ qn+1
i−1

hpredi−1

− qni+1

hni+1
+2

qni
hni

− qni−1

hni−1

)

+(1−�)

[
(hni )

3�t

6�x3
qni
hni

(
qni+2

hni+2
−2

qni+1

hni+1
+2

qni−1

hni−1
− qni−2

hni−2

)]

+�

[
(hpredi )3�t

6�x3
qpredi

hpredi

(
qn+1
i+2

hpredi+2

−2
qn+1
i+1

hpredi+1

+2
qn+1
i−1

hpredi−1

− qn+1
i−2

hpredi−2

)]
(25)

The momentum flux �̄predi+1/2 is evaluated by Roe’s scheme, according to (22)–(23), but with the

updated variables Upred
i issued from the predictor step (24)

�̄predi+1/2 = 1+Fr∗

2

[
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2

]
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2
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2

]

+c∗ 1−(Fr∗)2

2
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The interface-averaged Froude number Fr∗ and celerity c∗ are computed from (23) also using the
variables Upred

i . The result of this implicit step is the updated value qn+1
i .

Equation (25) can be rewritten as(
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+
(
1+ 2

3

(hni )
3

�x2 hni

)
qni +

(
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3.1.3. Corrector step for the continuity equation. Finally, the continuity equation is solved again
to find hn+1

i :

hn+1
i =hni − �t

�x
(q̄corri+1/2− q̄corri−1/2) (28)

The mass flux q̄corri+1/2 in (28) is evaluated using the average values of the mass flux q

q̄corri+1/2= 1+Fr∗

2

qni +qn+1
i

2
+ 1−Fr∗

2

qni+1+qn+1
i+1

2
−c∗ 1−(Fr∗)2

2
(hni −hni+1) (29)

3.2. Hybrid finite-volume scheme solution steps

The key steps in applying the proposed hybrid scheme to find the solution Un+1
i of Equations (1)

at time tn+1 from the known variables Un
i at time tn are summarized here:

1. Compute the intercell fluxes for the hyperbolic part of the equations from (22).
2. Find a provisional value for U(n+1)

i , i.e. h(n+1)
i and q(n+1)

i by applying the predictor
step (24).

3. Compute the effect of the dispersive terms in the momentum equation by applying the implicit
step. This consists in solving the pentadiagonal matrix arising from Equation (27) to find the
final value of qn+1

i .
4. Apply the corrector step (29) to find the final value of hn+1

i .

The pentadiagonal system of step 3 is solved by LU factorization, taking into account the limited
bandwidth of the matrix.

3.3. Numerical treatment of the dispersion terms

The present subsection focuses on the numerical treatment of the dispersive part of Equation (1).
The stability analysis is first carried out in the framework of the time splitting technique [32, 33],
where it is assumed that the hyperbolic part of the equation has already been solved and that the
only remaining problem is the solution of

�U
�t

−D

(
�3U

�t�x2
+u

�3U
�x3

)
=0 (30)
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The stability analysis is extended to the proposed predictor–corrector procedure at the end of
the present section. The fully time- and space-centred discretization is proposed in (25) for the
derivative �3U/�t�x2 on a regular grid

�3U
�t�x2

≈ 1

�t

⎡⎣(�2U
�x2

)n+1

−
(

�2U
�x2

)n
⎤⎦

≈ 1

�t�x2
[(Un+1

i−1 −2Un+1
i +Un+1

i+1 )−(Un
i−1−2Un

i +Un
i+1)] (31)

while a semi-implicit discretization is proposed for the derivative �3U/�x3:

�3U
�x3

≈ �

(
�3U
�x3

)n+1

+(1−�)

(
�3U
�x3

)n

≈ 1

2�x3
[�(−Un+1

i−2 +2Un+1
i−1 −2Un+1

i+1 +Un+1
i+2 )

+(1−�)(−Un
i−2+2Un

i−1−2Un
i+1+Un

i+2)] (32)

The time derivative is classically discretized as

�U
�t

≈ 1

�t
(Un+1

i −Un
i ) (33)

and the matrix D is evaluated using an explicit discretization. Prior to carrying out the stability
analysis, it is noted from the definition of D in Equation (5) that solving Equation (30) leaves the
first component h of the conserved variable U unchanged, that is

hn+1
i =hni (34)

Therefore, it is sufficient to carry out the stability analysis of the second component of the numerical
solution of the vector equation (30) alone, that is

�q
�t

− h20
3

(
�3q

�t�x2
+u0

�3q
�x3

)
= h20u0

3

(
�3h

�t�x2
+u0

�3h
�x3

)
(35)

where h0 and u0 are the reference water depth and velocity, considered as constant coefficients
for the sake of the linear stability analysis. Note that third-order derivatives in h in the right-hand
side of Equation (35) remain constant when solving the equation to find qn+1

i , as expressed by
Equation (34). Consequently, the right-hand side of Equation (35) is considered as a constant in
the linear stability analysis. Therefore, the stability analysis needs to be carried out only for the
homogeneous part of Equation (35), that is

�q
�t

− h2

3

(
�3q

�t�x2
+u

�3q
�x3

)
=0 (36)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:237–261
DOI: 10.1002/fld



BOUSSINESQ-TYPE WAVES IN RECTANGULAR CHANNELS 247

For the sake of clarity in the developments hereafter, the numerical second- and third-order
differentiation operators d2 and d3 are introduced:

d2qni = 1

�x2
(qni−1−2qni +qni+1)

d3qni = 1

2�x3
(−qni−1+2qni−1−2qni+1+qni+2)

(37)

Using these definitions the second components of Equations (31)–(33) can be rewritten as

�q
�t

≈ 1

�t
(qn+1

i −qni )

�3q
�t�x2

≈ 1

�t
(d2q

n+1
i −d2qni )

�3q
�x3

≈ �d3q
n+1
i +(1−�)d3qni

(38)

Substituting Equations (38) into Equation (36) leads to

qn+1
i −qni

�t
= (hni )

2

3

(
d2q

n+1
i −d2qni

�t
+[�d3qn+1

i +(1−�)d3qni ]uni
)

(39)

Rearranging leads to[
1− hni

3
(d2+��tuni d3)

]
qn+1
i =

[
1− hni

3
(d2−(1−�)�tuni d3)

]
qni (40)

The solution is sought in the form [34]
qni =q00 exp[�(n�t)+ j�(i�x)], �∈[0,�] (41)

Substituting Equation (41) into (37) leads to the following expressions:

d2qni = 2

�x2
(cos��x−1)qni

d3qni = j

�x3
(sin2��x−2sin��x)qni

(42)

where both quantities (cos��x−1) and (sin2��x−2sin��x) are negative (note that � belongs
to the interval [0,�]). Substituting Equation (42) into (40) leads to an expression of the form

(1−r1− j�r2)q
n+1
i =[1−r1+ j(1−�)r2]qni (43)

where r1 and r2 are given by

r1 = hni
3

2

�x2
(cos��x−1)

r2 = hni u
n
i

3

�t

�x3
(sin2��x−2sin��x)

(44)
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Note that both r1 and r2 are negative. The amplification factor AN for the solution over the time
step is

AN ≡ qn+1
i

qni
= 1−r1+ j(1−�)r2

1−r1− j�r2
(45)

The solution is stable if the modulus of AN is smaller than or equal to unity. The modulus of
AN is

|AN |=
[
(1−r1)2+[(1−�)r2]2

(1−r1)2+(�r2)2

]1/2
(46)

Clearly, the following properties hold regardless of the values of ��x and �t :

|AN | < 1 for �> 1
2

|AN | = 1 for �= 1
2

|AN | > 1 for �< 1
2

(47)

In other words, the discretization is unconditionally unstable for �< 1
2 and unconditionally stable for

�� 1
2 . Using �= 1

2 allows the amplitude of the numerical solution to be preserved, which corresponds
to the behaviour of the analytical solution outlined in Section 2. Increasing the computational time
step causes an increase in the magnitude of r2, thus increasing the unstable character of the scheme
for �< 1

2 and increasing the numerical damping for �> 1
2 . The value �= 1

2 has been adopted in the
application examples shown in Section 4.

The stability analysis above is extended to the predictor–corrector framework presented in
Section 3.1 as follows. The predictor–corrector procedure can be summarized by the following
sequence of numerical operators:

Un+1=CBPUn (48)

where C, B and P are the corrector, dispersion and predictor operators, respectively. Reasoning by
recurrence, Equation (48) can be rewritten as

Un+1=(CBP)nU0=C(BPC)n−1BPU0 (49)

where U0 is the initial condition. The numerical solution is stable if the sequence (BPC) yields
a stable solution. Note that the classical MUSCL scheme [35] can be described by the following
sequence:

Un+1=CPUn (50)

Again, reasoning by recurrence, Equation (50) can be rewritten as

Un+1=(CP)nU0=C(PC)n−1PU0 (51)

The sequence (CP), and therefore the sequence (PC), is known to yield a stable solution provided
that the following Courant–Friedrichs–Lewy (CFL) condition is satisfied:

CFL= �t

�xi
max(|uni −cni |, |uni +cni |)�1 ∀i (52)
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Therefore, the sequence (CBP) is stable provided that both the MUSCL scheme and the proposed
discretization for the dispersion terms are stable. In other words, stability is ensured if the CFL
condition (52) and the stability condition (47) are satisfied simultaneously.

3.4. Modified MUSCL reconstruction

The present section focuses on the solution of the hyperbolic part of the equation. It is reminded
that the predictor step consists in computing a first version of the fluxes using the ‘guessed’ values
of the flow variables at the interfaces between the computational cells. Such values were guessed
using the MUSCL reconstruction:

Un
i,L = Ũn

i (xi+1/2)

Un
i,R = Ũn

i (xi−1/2)
(53)

where Ũn
i (x) is the reconstructed profile function within the cell i at the time level n. In the

original version of the scheme [1] the reconstruction function was given by the classical MUSCL
reconstruction:

Ũn
i (x)=Un

i +(x−xi )�Un
xi (54)

The classical option consists in approaching the slope �Un
xi of U using the following first approx-

imation �U(1)n
xi (given here for an irregular grid):

�U(1)n
xi = �xi+1/2

(�xi+1/2+�xi−1/2)�xi−1/2
(Un

i+1−Un
i )

+ �xi−1/2

(�xi+1/2+�xi−1/2)�xi+1/2
(Un

i −Un
i−1) (55)

where �xi−1/2=(xi −xi−1)=(�xi−1+�xi )/2 is the distance between the gravity centres of the
cells i and i−1. Note that for a regular grid with constant cell width �x Equation (55) simplifies
into

�U(1)n
xi = 1

2�x
(Un

i+1−Un
i−1) (56)

A fourth-order Taylor series expansion in U yields the following truncation error:

�U(1)n
xi = �U

�x
+ �xi−1/2�xi+1/2

6

�3U
�x3

+ �xi−1/2�xi+1/2(�xi+1/2−�xi−1/2)

6

�4U
�x4

+HOT (57)

Consequently, discretization (57) is second-order accurate in U when the grid is irregular and third
order in U when the grid is regular.
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Note that Equation (55) could also be applied to the cells i−2, i and i+2 instead of the cells
i−1, i and i+1, leading to a second possible slope estimate �U(2)n

xi :

�U(2)n
xi = �xi+1/2+�xi+3/2

(�xi−3/2+�xi−1/2)
∑2

k=−1�xi−1/2+k
(Un

i+2−Un
i )

+ �xi−3/2+�xi−1/2

(�xi+1/2+�xi+3/2)
∑2

k=−1�xi−1/2+k
(Un

i −Un
i−2) (58)

the fourth-order Taylor series expansion of which is

�U(2)n
xi = �U

�x
+ (�xi−3/2+�xi−1/2)(�xi+1/2+�xi+3/2)

6

�3U
�x3

+ (�xi−3/2+�xi−1/2)(�xi+1/2+�xi+3/2)

6

×(−�xi−3/2−�xi−1/2+�xi+1/2+�xi+3/2)
�4U
�x4

+HOT (59)

The third-order derivatives can be eliminated by combining Equations (55) and (57) into a third
estimate �U(3)n

xi given by

�U(3)n
xi = a(1)U(1)n

xi −a(2)U(2)n
xi

a(1)−a(2)

a(1) = (�xi−3/2+�xi−1/2)(�xi+1/2+�xi+3/2)

a(2) = �xi−1/2�xi+1/2

(60)

Equation (60) is third-order accurate in U on irregular grids and fourth-order accurate on regular
grids. Note that this higher-order estimate of the slope does not mean that the resulting MUSCL4
scheme is fourth-order accurate. Indeed, the proposed modification affects only the estimate of the
slope in Equation (54) and not the order of the reconstruction itself. In other words, the order of
the truncation error remains the same in the proposed MUSCL4 scheme as in the original scheme,
but its amplitude is smaller.

To prevent the appearance of oscillations near steep gradients, a limiter should be applied. Three
limiting options are investigated in the application example of the solitary wave: the classical
minmod limiter presented in [36], the monotonized central-difference limiter of Van Leer, also
presented in [36], and the shock detecting limiter by Krivodonova et al. [37].

4. APPLICATION EXAMPLES

Three different applications of flow in a frictionless horizontal channel involving free-surface
undulations that can be represented by the dispersive terms of the Boussinesq equations are shown.
First, the example of the propagation of a solitary wave is used to illustrate the ability of the
proposed scheme to reproduce an analytical solution of the equations. Then, the development of
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an undular bore is presented, both from a theoretical point of view and by means of laboratory
experiments.

For all these applications, boundary conditions need to be applied. This is done using the ghost
cell technique [38, 39].

4.1. Propagation of a solitary wave

In order to assess the performance of the proposed scheme, numerical experiments of propagation
of a solitary wave were performed. The initial water profile was taken from Peregrine [40]

	(x, t=0)=a0h0 sech
2( 12

√
3a0(x−x0)) (61)

where 	 is the wave height above the undisturbed water depth h0, i.e. h=h0+	. The solitary wave
amplitude is a0, and x0 is the initial abscissa of the wave crest. The wave has a constant initial
celerity

V0=√gh0(1+a0/2) (62)

Substituting Equations (61) and (62) into the continuity equation allows the initial velocity profile
to be defined as

u(x, t=0)=V0
	(x, t=0)

h0+	(x, t=0)
(63)

As the solitary wave propagates without changing its shape, the analytical solution for the water
profile is simply given by

	(x, t)=a0h0 sech
2( 12

√
3a0(V0t−x0)) (64)

The numerical values of the parameters are given in Table I. Figure 3 shows the results computed
using the semi-implicit scheme with the fourth-order MUSCL variable reconstruction (hereafter
denoted as MUSCL4 scheme) on a refined grid (�x=0.05m). The initial wave is shown, and the
computed solution after 18 s, matching perfectly the analytical solution.

The effect of the various reconstructions is illustrated in Figure 4. The solutions are computed
using a cell size �x=0.5m, with �=0.5 and CFL=0.9. The Godunov scheme can be seen to yield
an unacceptable damping of the wave. The MUSCL scheme with the minmod limiter yields better
results; however, the wave remains strongly damped. The proposed MUSCL4 scheme allows the

Table I. Propagation of a solitary wave. Parameters of the test case.

Symbol Meaning Value

a0 Amplitude of the solitary wave 0.1m
CFL Value of the Courant–Friedrichs–Lewy number 0.1, 0.5, 0.9
g Gravitational acceleration 9.81m2 s−1

h0 Initial water depth 1m
x0 Initial abscissa of the crest of the wave 20m
�x Computational cell width 0.05m, 0.5m
� Implicitation parameter 0.0, 0.5, 0.6, 1.0
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Figure 3. Initial condition (wave centred at x=20m) and comparison between the numerical solution
(dots) for CFL=0.9, �x=0.05m and �=0.5 after 18 s and the analytical solution (continuous line).

Figure 4. Influence of the numerical scheme on solution accuracy. Wave amplitude as a
function of distance (left) and water depth profile at t=150s (right). Solutions obtained

for CFL=0.9, �x=0.5m and �=0.5.

analytical solution to be better reproduced. Figure 4 shows the results obtained using the scheme
in conjunction with the monotonized central-difference limiter of Van Leer (MUSCL4-MC in
the figure). A last option consists in applying the limiter only in the vicinity of steep gradients,
following a shock detection procedure [37] (results labelled MUSCL4 in the figure). In the present
case, it unexpectedly appears that this option corresponds to not applying the limiter at all, as the
solitary wave does not induce any steep gradient, and thus no shock was detected. Therefore, the
solution is almost not damped and the characteristics of the solitary wave are well preserved.

As outlined in the stability analysis, when �=0.5 the numerical solution is stable and the
amplification factor is equal to unity, regardless of the time step. This is illustrated in Figure 5,
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Figure 5. Influence of the time step on the results computed with the MUSCL4 scheme, �=0.5:
wave amplitude as a function of distance (left) and water depth profile at t=150s (right).

Solutions obtained for �x=0.05m and �=0.5.

Figure 6. Influence of � on the results computed with the MUSCL4 scheme, CFL=0.5:
wave amplitude as a function of distance (left) and water depth profile at t=150s (right).

Solutions obtained for CFL=0.9 and �x=0.5m.

comparing results computed with the MUSCL4 scheme, with �x=0.5m and �=0.5, and using
three different CFL numbers. The wave amplitude is well preserved: the computed amplification
factor 	/	0 is close to 1. The delay of the wave is reduced for smaller time steps (CFL=0.1).

Results for various values of � are presented in Figure 6. Using a fully implicit scheme (�=1)
has a strong negative effect on the amplification factor. Even for �=0.6, the damping is very
strong. The lag between the numerical and the analytical solution is seen to increase with �.

Finally, the behaviour of the scheme is investigated for �=0, which from the stability analysis
in Section 3.2 should be expected to yield an unstable solution. This is illustrated in Figure 7,
where the computed results rapidly diverge from the analytical solution, with important over- and
undershoots.
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Figure 7. Instability of the numerical scheme for �=0. Water depth computed at t=10 and 20s. Numerical
solution obtained for CFL=0.9 and �x=0.5m.

4.2. Development of an undular bore

According to the shallow-water theory, a long wave steepens as it travels and may eventually form
a bore [41]. In most cases, such a bore develops into a turbulent zone of breaking water, the length
of which is about 6 times the water depth. However, if the bore is weak, a train of long, almost
periodic waves develops. From a physical point of view, the growth of an undular bore is due to the
free-surface curvature, inducing extra horizontal pressure gradients as a consequence of the vertical
acceleration of the water [1, 2]. This was illustrated by Peregrine [2], showing how a smooth wave
steepens when considering only the classical shallow-water equations, and how undulations grow
at the head of the bore when the Boussinesq equations accounting for weak non-hydrostaticity
are used, while such a phenomenon cannot be reproduced using the shallow-water equations. The
initial wave profile used by Peregrine was

	= 1

g

(
u
√
gh0+ 1

4
u2
)

(65)

u= 1
2u0

√
gh0[1− tanh(x/a)] (66)

with the water depth h=h0+	,h0 being the undisturbed initial water depth, u0 the velocity of the
incoming wave and a a parameter describing the shape of the incoming wave (a smaller value of
a gives a steeper initial profile).

Computations of the propagation of such a wave and its development into an undular bore are
shown in Figure 8. Table II summarizes the parameters of the simulation. The computations are run
with �x=0.2m using three different schemes. First, the classical shallow water is used, solved by
a Roe-type finite-volume scheme [30]. Then, the finite-difference scheme by Peregrine [2] is used
to solve the Boussinesq equations (1) and finally the hybrid finite-volume scheme with MUSCL4
reconstruction proposed in the present paper, with �=0.5 and CFL=0.9. The solution of the
shallow-water equations leads to a progressive steepening of the bore without any undulation, while
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Figure 8. Development of an undular bore computed with the shallow-water equations and with the
Boussinesq equations (Peregrine finite-difference scheme [9] and MUSCL4 scheme).
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Table II. Development of an undular bore. Parameters of the numerical test case.

Symbol Meaning Value

a Characteristic length of the bore 5m
CFL Value of the Courant–Friedrichs–Lewy number 0.9
g Gravitational acceleration 9.81m2 s−1

h0 Undisturbed, initial water depth 1m
u0 Velocity behind the bore 0.1ms−1

�x Computational cell width 0.2m
� Implicitation parameter 0.5

Figure 9. Experimental set-up. Dimensions in metres.

the Boussinesq equations solved by Peregrine’s method and the proposed numerical technique
allow the growth of the undulations at the head of the bore to be reproduced.

4.3. Experimental validation

Undular bores were reproduced experimentally by Favre [3] who showed that undular bores form
when the ratio of the change in level to the initial water depth is smaller than 0.28. Similar
experiments were conducted by Soares-Frazão and Zech [1]. The experimental data are used here
to validate the proposed MUSCL4 scheme. The experimental set-up, located in the laboratory of
the Civil and Environmental Engineering Department of the University of Louvain (Université
catholique de Louvain—UCL), is sketched in Figure 9. The channel bed is horizontal, and a gate
separates the upstream reservoir from the channel. The water is initially at rest in both regions.
When the gate is opened rapidly, a bore forms and travels in the downstream channel (Figure 10).
Note that the gate is not open in full but raised so that its bottom level remains below the initial
level in the upstream part of the channel. This allows the flow cross-sectional area and the upstream
hydraulic head, thus the discharge, to be maintained at a constant value for a sufficiently long
time. Water-level gauges (C0–C5) were placed in the channel to record the time evolution of the
water level. The characteristics of the experiments are summarized in Table III.

The measurements are compared with the numerical results computed with the MUSCL4 scheme
in Figure 11. The results obtained by using the hybrid finite-volume scheme of [1] are also
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Figure 10. Undular bore experiment. View from the upstream end of the canal.

Table III. Development of an undular bore. Parameters of the experiments.

Symbol Meaning Value

CFL Value of the Courant–Friedrichs–Lewy number 0.9
g Gravitational acceleration 9.81m2 s−1

h0 Undisturbed, initial water depth 0.251m
qg Unit discharge at the gate 0.059ms−1

�x Computational cell width 0.05m
� Implicitation parameter 0.5

indicated. The significant improvement in the computed results with the MUSCL4 scheme can be
clearly observed: the attenuation of the wave train occurs slower than with the former scheme.
The growth of the first wave is more rapid in the experiment than in both numerical schemes. At
gauge C5, the closest to the gate, the actual wave has already reached its maximum amplitude
(about 0.31m), while the numerical waves still grow. When reaching gauge C3, the wave simulated
with the MUSCL4 scheme has grown to the correct amplitude, while the amplitude of the wave
simulated with the former scheme is too small. Table IV gives the experimental and numerical
values of the ratio of the first wave amplitude a0 to the average upstream water depth h0 and the
ratio of the wavelength l0 to h0, as measured when the wave passes at gauge G1.

It should be noted that the MUSCL4 reconstruction yields better results than the classical
MUSCL reconstruction in the present situation where the initial profile is continuous and remains
so at later times. Numerical experiments, not reported here for the sake of conciseness, have shown
that when the classical shallow-water equations are to be solved with the possible development of
discontinuous solutions, the MUSCL scheme gives better results than the MUSCL4 reconstruction
owing to its smaller stencil. The well-known fact that slope limiting applied to schemes with large
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Figure 11. Experimental and computed water levels at the five gauging stations. Numerical results obtained
using the hybrid finite volume scheme (HFV) and the proposed scheme (MUSCL4).

Table IV. Development of an undular bore. Characteristics of the bore.

Symbol Meaning Value at gauge C1

a0/h0 Ratio of the first wave amplitude to the initial 0.245 (experimental)
water depth 0.217 (MUSCL scheme)

0.247 (MUSCL4 scheme)
l0/h0 Ratio of the first wave length to the initial 8.864 (experimental)

water depth 8.903 (MUSCL scheme)
9.189 (MUSCL4 scheme)
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stencils may lead to smoother fronts is usually solved by devising several slope estimates and
using the steepest one that preserves the monotonicity of the profile (see [42] for an example).
However, such an approach does not need to be applied in the present applications, where smooth
profiles are dealt with.

5. CONCLUSIONS

A new semi-implicit hybrid discretization (finite volumes/finite differences) is proposed to solve
the Boussinesq equations, for the simulation of flows presenting weak deviations from the classical
hydrostatic shallow-water theory. The scheme features an improved treatment of the hyperbolic
terms, combining Riemann solvers and semi-implicitation for the momentum equation, and a
discretization of the dispersive terms that is less sensitive to the computational time step than a
previously proposed hybrid scheme. Indeed, a stability analysis of the proposed scheme shows
that for an implicitation factor �=0.5, the solution is neither amplified nor damped.

A higher-order formula is proposed for the estimate of the slope in the MUSCL reconstruction
in order to increase the accuracy of the numerical results. Comparisons with results obtained
using the classical MUSCL approach illustrate the performances of this new scheme. Numerical
experiments show the ability of the proposed scheme to simulate the propagation of a solitary wave
and the growth of an undular bore. The example of the solitary wave, where the wave propagates
without deforming, shows that the proposed scheme is able to reproduce the analytical solution.
The results obtained for the growth of an undular bore are compared successfully with the results
given by Peregrine’s finite-difference scheme.

Finally, a comparison with an experimental test case was presented, in which the proposed
scheme reproduces the measurements with a good agreement. In particular, a comparison with
past studies highlights the efficiency of the new discretization of the dispersive terms and of the
new variable reconstruction scheme.
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